
Lecture 15: Pseudo-random Generators

PRG Construction



Objective

Today we shall introduce the concept of pseudorandom
generators
We shall construct one-bit extension pseudorandom generators
from one-way permutations using Goldreich-Levin Hardcore
predicate
We shall construct arbitrary stretch pseudorandom generators
from one-bit extension pseudorandom generators

PRG Construction



Pseudorandom Generator: PRG I

Definition (PRG)

Let G : {0, 1}n → {0, 1}n+` be a function that is efficient to
evaluate. We say that G is a pseudorandom generator, if

1 The stretch ` > 0, and
2 The distribution G (U{0,1}n) “appears indistinguishable” from

the distribution U{0,1}n+` for computationally bounded
adversaries.

Clarifications.
1 The input bits s ∼ U{0,1}n that is fed to the PRG is referred to

as the seed of the PRG
2 Intuition of a PRG: We rely on a small amount of pure

randomness to jumpstart a PRG that yields more (appears to
be) random bits

PRG Construction



Pseudorandom Generator: PRG II

3 Note that if ` 6 0 then PRG is easy to construct. Note that in
this case n + ` 6 n. So, G (s) just outputs the first n + ` bits
of the input seed s.

4 The entire non-triviality is to construct G when ` > 1.
Suppose ` = 1. Note that in the case G has 2n different
possible inputs. So, G has at most 2n different possible
outputs. The range {0, 1}n+` has size 2n+1. So, there are at
least 2n+1 − 2n = 2n elements in the range that have no
pre-image under the mapping G . We can conclude that
G (U{0,1}n) assigns 0 probability to at least 2n entries in the
range.

PRG Construction



Pseudorandom Generator: PRG III

5 Note that the distribution G (U{0,1}n) is different from the
distribution U{0,1}n+1 . A computationally unbounded adversary
can distinguish G (U{0,1}n) from U{0,1}n+1 . However, for a
computationally bounded adversary, the distribution
G (U{0,1}n) appears same as the distribution U{0,1}n+1

6 In this class, we shall see a construction of PRG when ` = 1
given a OWP f . In general, we know how to construct a PRG
using a OWF. However, presenting that construction is beyond
the scope of this course.

7 Note that these PRG constructions work for ny OWF f . So, if
some OWF f is broken in the future due to progress in
mathematics or use of quantum computers, then we can
simply replace the existing PRG constructions to use a
different OWF g .

PRG Construction



Observation on Bijections

Let f : {0, 1}n → {0, 1}n be a bijection

Suppose we sample x
$←{0, 1}n

For any y ∈ {0, 1}n, what is the probability that f (x) = y?
Note that there is a unique x ′ such that f (x ′) = y , because f
is a bijection
f (x) = y if and only if x = x ′, i.e. the probability that
f (x) = y is 1/2n.

So, the distribution of f (x), where x
$←{0, 1}n, is a uniform

distribution over {0, 1}n

PRG Construction



Goldreich-Levin Hardcore Predicate I

We define the inner product of r ∈ {0, 1}n and x ∈ {0, 1}n as
〈r , x〉 = r1x1 ⊕ r2x2 ⊕· · · ⊕ rnxn

We will state the Goldreich-Levin Hardcore Predicate without
proof

Theorem (Goldrecih-Levin Hardcore Predicate)

If f {0, 1}n → {0, 1}n is a one-way function then the bit b = 〈r , x〉
cannot be predicted given (r , f (x)). This proof is beyond the scope
of this course. However, students are encouraged to study this
celebrated result in the future.

PRG Construction



Goldreich-Levin Hardcore Predicate II

A note on “Predicting a bit”

Note that it is trivial to correctly predict any bit with
probability 1/2. (Guess a uniformly random bit z . The
probability that z is identical to the hidden bit is 1/2)

To non-trivially predict a hidden bit, the adversary has to
correctly predict it with probability at least 1/2+ ε, where
ε = 1/poly(n)

PRG Construction



One-bit Extension PRG I

Recall: A pseudorandom generator (PRG) is a function
Gn,n+` : {0, 1}n → {0, 1}n+` such that, for x $←{0, 1}n, the
output Gn,n+`(x) looks like a random (n + `)-bit string.

A one-bit extension PRG has ` = 1

Suppose f : {0, 1}n → {0, 1}n is a OWP (i.e., f is a OWF and
it is a bijection)

Note that the mapping (r , x) 7→ (r , f (x)) is a bijection

So, the output (r , f (x)) is a uniform distribution if
(r , x)

$←{0, 1}2n

Now, the output (r , f (x), 〈r , x〉) looks like a random
(2n + 1)-bit string if f is a OWP (because of Goldreich-Levin
Hardcore Predicate result)

PRG Construction



One-bit Extension PRG II

Consider the function G2n,2n+1 : {0, 1}2n → {0, 1}2n+1 defined
as follows

G2n,2n+1(r , x) = (r , f (x), 〈r , x〉)

This is a one-bit extension PRG if f is a OWP

This construction will be pictorially represented as follows

r

x

r

f (x)

〈r , x〉

G

PRG Construction



Generating Long Pseudorandom Bit-Strings I

In the previous step, we saw how to construct a one-bit
extension PRG G

Now, we use the previous step iteratively to construct
arbitrarily long pseudorandom bit-strings

The next slide, using the one-bit extension PRG, provides the
intuition to construct G2n,` : {0, 1}2n → {0, 1}2n+`, for
arbitrary ` = poly(n).
The example shows only ` = 5 but can be extended naturally
to arbitrary ` = poly(n)

PRG Construction



Generating Long Pseudorandom Bit-Strings II

r

x

b0 =
〈r , x〉

G

r

f (x)

b1 =〈
r , f (x)

〉

G

r

f 2(x)

b2 =〈
r , f 2(x)

〉

G

r

f 3(x)

b3 =〈
r , f 3(x)

〉

G

r

f 4(x)

b4 =〈
r , f 4(x)

〉

G

r

f 5(x)

PRG Construction



Length Doubling PRG

This is a PRG that takes n-bit seed and outputs 2n-bit string
Gn,2n is a length-doubling PRG if Gn,2n : {0, 1}n → {0, 1}2n
and Gn,2n is a PRG
We can use the iterated construction in the previous slide to
construct a length-doubling PRG from one-bit extension PRG

PRG Construction



Food for thought

Design secret-key encryption schemes where the message is
much longer than the secret key

PRG Construction


