

Objective

@ Today we shall introduce the concept of pseudorandom
generators

@ We shall construct one-bit extension pseudorandom generators
from one-way permutations using Goldreich-Levin Hardcore
predicate

@ We shall construct arbitrary stretch pseudorandom generators
from one-bit extension pseudorandom generators

PRG Construction

Pseudorandom Generator: PRG

Definition (PRG)
Let G: {0,1}" — {0,1}"™ be a function that is efficient to
evaluate. We say that G is a pseudorandom generator, if
@ The stretch ¢ > 0, and
© The distribution G(Uy 137) “appears indistinguishable” from
the distribution U{o,1}"+’~’ for computationally bounded
adversaries.

Clarifications.

© The input bits s ~ Uy q3n that is fed to the PRG is referred to
as the seed of the PRG

@ Intuition of a PRG: We rely on a small amount of pure
randomness to jumpstart a PRG that yields more (appears to
be) random bits

PRG Construction

Pseudorandom Generator: PRG [

© Note that if £ < 0 then PRG is easy to construct. Note that in
this case n+ ¢ < n. So, G(s) just outputs the first n + ¢ bits
of the input seed s.

@ The entire non-triviality is to construct G when £ > 1.
Suppose £ = 1. Note that in the case G has 2" different
possible inputs. So, G has at most 2" different possible
outputs. The range {0,1}""* has size 2™, So, there are at
least 271 — 27 = 2" elements in the range that have no
pre-image under the mapping G. We can conclude that
G(Uyp,13n) assigns O probability to at least 2" entries in the
range.

PRG Construction

Pseudorandom Generator: PRG [

© Note that the distribution G(Uyq 1)) is different from the
distribution U{071}n+1. A computationally unbounded adversary
can distinguish G(Uyg 1») from Uyg,qyn+2- However, for a
computationally bounded adversary, the distribution
G(Uyo,13) appears same as the distribution Uyg 13nr

@ In this class, we shall see a construction of PRG when ¢ =1
given a OWP f. In general, we know how to construct a PRG
using a OWF. However, presenting that construction is beyond
the scope of this course.

@ Note that these PRG constructions work for ny OWF f. So, if
some OWF f is broken in the future due to progress in
mathematics or use of quantum computers, then we can

simply replace the existing PRG constructions to use a
different OWF g.

PRG Construction

Observation on Bijections

o Let : {0,1}" — {0,1}" be a bijection

o Suppose we sample x < {0,1}"
e For any y € {0,1}", what is the probability that f(x) = y?
o Note that there is a unique x’ such that f(x’) = y, because f
is a bijection
o f(x) =y if and only if x = x’, i.e. the probability that
f(x)=yis1/2"
e So, the distribution of f(x), where x < {0,1}", is a uniform
distribution over {0,1}"

PRG Construction

Goldreich-Levin Hardcore Predicate |

e We define the inner product of r € {0,1}" and x € {0,1}" as
(r,x) = nx1® rx; ®- - ® rxn

o We will state the Goldreich-Levin Hardcore Predicate without
proof

Theorem (Goldrecih-Levin Hardcore Predicate)

If £{0,1}" — {0,1}" is a one-way function then the bit b = (r, x)
cannot be predicted given (r, f(x)). This proof is beyond the scope
of this course. However, students are encouraged to study this
celebrated result in the future.

PRG Construction

Goldreich-Levin Hardcore Predicate I

A note on “Predicting a bit"

@ Note that it is trivial to correctly predict any bit with
probability 1/2. (Guess a uniformly random bit z. The
probability that z is identical to the hidden bit is 1/2)

@ To non-trivially predict a hidden bit, the adversary has to
correctly predict it with probability at least 1/2 + &, where

e = 1/poly(n)

PRG Construction

One-bit Extension PRG |

@ Recall: A pseudorandom generator (PRG) is a function
Gnnie: {0,137 — {0,1}™ such that, for x < {0,1}", the
output G, nyr(x) looks like a random (n + £)-bit string.

@ A one-bit extension PRG has ¢ =1

@ Suppose f: {0,1}" — {0,1}" is a OWP (i.e., f is a OWF and
it is a bijection)

@ Note that the mapping (r, x) — (r, f(x)) is a bijection

@ So, the output (r, f(x)) is a uniform distribution if
(r,x) < {0,1}?"

e Now, the output (r, f(x), (r, x)) looks like a random

(2n + 1)-bit string if f is a OWP (because of Goldreich-Levin
Hardcore Predicate result)

PRG Construction

One-bit Extension PRG I

e Consider the function Gpp2py1: {0, 1}2” — {0, 1}2'”rl defined
as follows

G2n,2n+1(raX) = (rv f(X)a <r)X>)
@ This is a one-bit extension PRG if f is a OWP

@ This construction will be pictorially represented as follows

_r o
x | € f(x)

-

(r;x)

PRG Construction

Generating Long Pseudorandom Bit-Strings |

@ In the previous step, we saw how to construct a one-bit
extension PRG G

@ Now, we use the previous step iteratively to construct
arbitrarily long pseudorandom bit-strings

@ The next slide, using the one-bit extension PRG, provides the
intuition to construct Gp: {0,1}?" — {0,1}*"** for
arbitrary ¢ = poly(n).

@ The example shows only £ = 5 but can be extended naturally
to arbitrary ¢ = poly(n)

PRG Construction

Generating Long Pseudorandom Bit-Strings ||

PRG Construction

Length Doubling PRG

@ This is a PRG that takes n-bit seed and outputs 2n-bit string

@ Gp2n is a length-doubling PRG if G, 2,: {0,1}" — {0, 1}2"
and G,2p is a PRG

@ We can use the iterated construction in the previous slide to
construct a length-doubling PRG from one-bit extension PRG

PRG Construction

Food for thought

@ Design secret-key encryption schemes where the message is
much longer than the secret key

PRG Construction

